If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-133x=0
a = 1; b = -133; c = 0;
Δ = b2-4ac
Δ = -1332-4·1·0
Δ = 17689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17689}=133$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-133)-133}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-133)+133}{2*1}=\frac{266}{2} =133 $
| 3-3/4x=1/4-7 | | 3c+4c-4c=9 | | .9=-1.8x | | 9v-6=12/4-72/4v | | 4+9=3x-5 | | -18+43=-5(x+8) | | 2x+12/6=6 | | -10w=10 | | -18+43=-5(x+8 | | 3/8n+16=1/8n | | 1.5x-0.2=2.8 | | x÷-4=-90 | | 7(6x-5)+7=42x-10 | | -6+9=m-9 | | 5.4p+13.1=-2.6p=3.5 | | y/7+4=-12 | | -19t+6t+-19t=13 | | g-20=34 | | 4x+(6-3x)=8-2x | | 5y+5+2y+6=12y-29 | | a2+14a−51=0 | | 8x-8+5x+22=6x+12 | | 9/7+8/9x=-6 | | 12b-9=-27 | | -9x-3x=36 | | 9p-8p=4 | | 4+–3c=13 | | -5r+5r+6=-3 | | -4(x-6)-4=20 | | X+2y=39+2 | | -y=9y-10 | | –9v=8−10v |